Новые методы добычи сырья и новые виды энергии.
Себестоимость добычи тепловой энергии таким способом в 2-2.5 раза ниже, чем тепловой энергии, получаемой от котельных. Себестоимость электроэнергии на Паужетской геотермальной электростанции в 4 раза ниже, чем на дизельных электростанциях в том же районе. Эти показатели могут быть значительно улучшены при условии более полного освоения геотермальной энергии. Имеются предположения об использовании более крупных месторождений термальных вод на Камчатке (Мутновское, Нижнекошелевское) с сооружением геотермальных электростанций мощностью 200 и 100 МВт.
О наличии геотермальной энергии давно известно в Дагестане. В 60-70-х гг. при бурении на нефть и газ в ряде скважин были обнаружены пароводяные смеси с температурами до 200 5о 0С. На базе одной из них (Тарумовской), по мнению специалистов, можно соорудить геотермальную электростанцию мощностью 250-500 МВт.
В Краснодарском крае пробуренные геологами скважины вместо нефти вскрыли запасы горячей воды. Сейчас термальные воды используют для многочисленных теплиц объединения "Плодоовощевод", для животноводческого комплекса, теплового орошения полей, промышленных предприятий и теплоснабжения населения. Крупные запасы термальных вод были обнаружены в Чечено-Ингушетии (Грозный) и других районах, но они пока слабо используются.
Большими потенциальными ресурсами тепловой энергии обладают нагретые глубинным теплом Земли горные породы ряда районов страны. Особо значительной теплотой сгорания обладают сульфидные руды и концентраты. Процессы автогенной плавки могут быть высокоэффективно применены в производстве меди, никеля, кобальта, свинца из сульфидного сырья, а также для безотвальной переработки пиритных концентратов с получением серной кислоты или элементарной серы, железного концентрата и цветных металлов. Практическое освоение такой энергии требует разработки способов извлечения тепловой энергии и создания опытных установок. Здесь пока сделаны первые шаги. Широкое использование геотермальной энергии, запасы которой практически неисчерпаемы, зависит от дальнейшего прогресса техники и нахождения экономичных путей ее применения.
Другим видом "мягкой" энергии является солнечная энергия.
Отопительные системы, применяющие солнечную энергию, могут удовлетворять 30-50% потребности в тепле в течение года, поэтому их приходится использовать совместно с традиционными системами обогрева.
Водонагреватели применяются для горячего водоснабжения. Солнечная энергия может быть использована и для отопления теплиц, опреснения воды, охлаждения. Часть тепла можно аккумулировать путем нагрева камней в условиях теплоизоляции. При этом существенно экономичны при условии достаточного в течение дня времени излучения солнечной энергии. В южных районах России, где время солнечной радиации составляет 2200-3000 ч (на Северном Кавказе, в Нижнем Поволжье), солнечные тепловые установки эффективны.
Солнечное излучение превращается также в электроэнергию. Это осуществляется, во-первых, путем получения тепловой энергии с последующим использованием ее для приведения в действие генераторов электрической энергии и, во-вторых, фотоэлектрическим методом прямого преобразования солнечного излучения в электрическую энергию. Проектируются опытные термодинамические солнечные электростанции с паровыми турбинами. Однако требуемые для этого удельные капитальные вложения в несколько раз больше, чем капитальные вложения в обычные теплоэлектростанции. По данным американских специалистов, капитальные вложения в гелиотермальные станции мощностью 5-400 МВт приблизительно в 10 раз дороже, чем на тепловой электростанции. Для получения энергии нужны большие площади зеркал - примерно 50 кв.км на 1 млрд.кВтч электроэнергии. В перспективе с учетом научно-технического прогресса в определенных районах окажется перспективной утилизация и солнечного излучения. В настоящее время применения полупроводников и интегральных схем позволяет значительно снизить затраты на получение электроэнергии за счет солнечной радиации (в десятки раз по сравнению с прежними результатами).
Что касается теплоэлектрического (прямого) метода получения электроэнергии, то он пока еще очень дорог. Солнечные батареи уже ряд лет используются для питания электроэнергией космических кораблей при КПД до 20%, что гораздо меньше теоретически возможного. Наземные электростанции на кремниевых солнечных батареях на 1 кВт установленной мощности в 100 раз дороже атомных. При сравнении с атомными гелиотермические электростанции вовсе не загрязняют окружающую среду. Перспектива их применения зависит от прогресса в области гелиотехники.